Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits

نویسندگان

  • Chuji Wang
  • Peeyush Sahay
چکیده

Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC) disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS), cavity ringdown spectroscopy (CRDS), integrated cavity output spectroscopy (ICOS), cavity enhanced absorption spectroscopy (CEAS), cavity leak-out spectroscopy (CALOS), photoacoustic spectroscopy (PAS), quartz-enhanced photoacoustic spectroscopy (QEPAS), and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS). Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis.

Broad-bandwidth, high-spectral-resolution optical detection of human breath has identified multiple important biomarkers correlated with specific diseases and metabolic processes. This optical-frequency-comb-based breath analysis system comes with excellent performance in all criteria: high detection sensitivity, ability to identify and distinguish a large number of analytes, and simultaneous, ...

متن کامل

Recent advances of laser-spectroscopy-based techniques for applications in breath analysis.

Laser absorption spectroscopy (LAS) in the mid-infrared region offers a promising new effective technique for the quantitative analysis of trace gases in human breath. LAS enables sensitive, selective detection, quantification and monitoring in real time, of gases present in breath. This review summarizes some of the recent advances in LAS based on semiconductor lasers and optical detection tec...

متن کامل

Application of Cavity Enhanced Absorption Spectroscopy to the Detection of Nitric Oxide, Carbonyl Sulphide, and Ethane—Breath Biomarkers of Serious Diseases

The paper presents one of the laser absorption spectroscopy techniques as an effective tool for sensitive analysis of trace gas species in human breath. Characterization of nitric oxide, carbonyl sulphide and ethane, and the selection of their absorption lines are described. Experiments with some biomarkers showed that detection of pathogenic changes at the molecular level is possible using thi...

متن کامل

DETECTION AND MEASUREMENT OF ACETONE IN THE BREATH OF DIABETICS BY ION MOBILITY SPECTROMETRY METHOD

Background: The ion mobility spectrometry (IMS) is an analytical technique that is widely used due to its high sensitivity and speed for the detection of ionized molecules in gas phase and under atmospheric pressure. Breath analysis is a new method for obtaining information about person's clinical conditions that is considered by researchers. Human exhaled air contains a variety of components s...

متن کامل

Mid-IR spectroscopic instrumentation for point-of-care diagnosis using a hollow silica waveguide gas cell

Laser spectroscopy provides the basis of instrumentation developed for the diagnosis of infectious disease, via quantification of organic biomarkers that are produced by associated bacteria. The technology is centred on a multichannel pulsed quantum cascade laser system that allows multiple lasers with different wavelengths to be used simultaneously, each selected to monitor a different diagnos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2009